Preparation and functional characterization of human vascular endothelial growth factor-melittin fusion protein with analysis of the antitumor activity in vitro and in vivo.
نویسندگان
چکیده
Vascular endothelial growth factor and its tyrosine kinase receptors have been identified as key mediators of the regulation of pathologic blood vessel growth and maintenance in the promotion of angiogenesis and tumor growth. Therefore, an alternative approach to destroying tumor endothelium would be to make this tissue particularly sensitive to VEGF-mediated drug delivery. To verify this hypothesis, we generated a protein containing VEGF165 fused to melittin. Melittin is a small linear peptide composed of 26 amino acid residues that can exert toxic or inhibitory effects on many types of tumor cells. This protein is a cytolytic peptide that attacks lipid membranes, leading to significant toxicity. In the present study, the Pichia pastoris expression system was used to express the fusion protein. Under optimal conditions, stable VEGF165-melittin production was achieved using a series of purification steps. The activity of VEGF165-melittin fusion protein was compared with melittin for its ability to suppress the growth of tumor cell line in vitro. The fusion toxin selectively inhibited growth of human hepatocellular carcinoma HepG-2 cell line with high expression of VEGFR-2. We found that sensitivity of VEGFR-2 transfected 293 cells to VEGF165-melittin enhanced as the cellular VEGFR-2 density increased. In an in vivo initial experiment, the fusion protein inhibited tumor growth in xenografts assays. Furthermore, successful expression and characterization of the fusion protein demonstrated its efficacy for use as a novel treatment strategy for cancer.
منابع مشابه
In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies
Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...
متن کاملDesign of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function
Objective(s): Nanobodies, the single domain antigen binding fragments of heavy chain-only antibodies occurring naturally in camelid sera, are the smallest intact antigen binding entities. Their minimal size assists in reaching otherwise largely inaccessible regions of antigens. However, their camelid origin raises a possible concern of immunogenicity when used for human therapy. Humanization is...
متن کاملHeterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing
Objective(s): Vascular endothelial growth factor (VEGF) is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs) differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli (E. coli) system and then biol...
متن کاملIn vitro combination therapy of pathologic angiogenesis using anti-vascular endothelial growth factor and anti-neuropilin-1 nanobodies
Objective(s): Emergence of resistant tumor cells to the current therapeutics is the main hindrance in cancer treatment. Combination therapy, which mixes two or more drugs, is a way to overcome resistant problems of cancer cells to current treatments. Nanobodies are promising tools in cancer therapy due to their high affinity as well as high penetration to tumor sites....
متن کاملIn vivo Characterization of Fusion Protein Comprising of A1 Subunit of Shiga Toxin and Human GM-CSF: Assessment of Its Immunogenicity and Toxicity
Background: Most cancer cells become resistant to anti-cancer agents. In the last few years, a new approach for targeted therapy of human cancer has been developed using immunotoxins which comprise both the cell targeting and the cell killing moieties. Methods: In the present study, the recombinant Shiga toxin A1 subunit fused to human granulocyte-macrophage colony stimulating factor (A1-GM-CSF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of oncology
دوره 47 3 شماره
صفحات -
تاریخ انتشار 2015